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The generation of Brownian dynamics trajectories for a flexible polymer constituted of statistical Gaussian 
units with intramolecular long-range (excluded volume) interactions is accomplished. The intramolecular 
interactions are described by relatively soft repulsive forces derived from an exponentially decaying potential 
with a cut-off distance. The validity of this method is satisfactorily tested through the comparison of a 
wide set of numerical results for equilibrium properties (different averaged dimensions and internal distances, 
and the end-to-end distance distribution factor) with Monte Carlo results from a model that includes the 
customary hard-spheres representation of excluded volume forces. Furthermore, the numerical values 
obtained in this study for the different properties are shown to agree with the scaling theories or 
Renormalization Group predictions. A transport property, the translational diffusion coefficient, is also 
obtained and included in the numerical analysis. 
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I N T R O D U C T I O N  

Brownian dynamics (BD) simulations constitute the best 
choice to obtain transport and dynamic properties of a 
polymer chain in a continuous solvent, since it permits 
the introduction of realistic hydrodynamic interactions 
(HI)  between polymer units. In recent years, a 
considerable amount of numerical work has been directed 
to obtain these properties for Gaussian and worm-like 
chains 1 6. Some studies have also been performed with 
models that include long-range intramolecular inter- 
actions 7"8. However, these models do not consider HI 
effects and, therefore, the results are restricted to 
equilibrium properties only. Nevertheless, the introduction 
of HI implies an additional complication of the numerical 
method 1'2'9. The computational problem is aggravated 
by the presence of long-range interactions, which require 
a careful choice of time steps. Unfortunately, we have 
verified that the combined use of small time steps with 
HI poses a severe limit on the feasibility of generating 
long trajectories. 

In the present work, a model is examined in which the 
excluded volume interactions are described through a 
'relatively soft' intramolecular potential added to a 
Gaussian chain. Employing this potential, we have found 
that we do not need any further reduction of the time 
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length step with respect to the value that we have 
previously used for unperturbed chains 9. This method 
has been shown to be clearly more efficient than 
our previous (not reported) initial attempts with HI and 
harder potentials, where the time steps had to be severely 
reduced. Of course, the validity of such a method is 
subordinated to the performance of the model to 
reproduce different properties that can also be checked 
through alternative computations. In particular, we have 
focused our test on the reproduction of the following 
equilibrium properties: the critical exponent v, defined 
as ( S  2 ) = a2M 2v, where ( S  2 ) is the quadratic mean 
radius of gyration for a chain with N units; the 
distribution function F(R)  of the end-to-end distance; 
internal averages between units as (Ri-j 1 ) and (R E) ,  
that are useful for determining many properties through 
exact or approximate formulae. We have computed these 
properties with our method (including HI and the soft 
potential) and we have compared the results with 
theoretical predictions and also with values calculated 
through alternative Monte Carlo (MC) calculations 
performed for a model of Gaussian chains with a hard 
intramolecular potential between units. The excluded 
volume interactions are easily introduced in MC 
simulations, which correctly reproduce the equilibrium 
properties of polymers in dilute solutions, though they 
can describe only dynamics in tentative 1°'11, not 
completely realistic, ways. 
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In addition to our study of purely static properties, a 
transport property, the diffusion coefficient Dr, is 
obtained from the mean quadratic displacement of the 
centre of masses along the trajectory, as the first 
application of the method to the evaluation of properties 
directly related with the HI problem. In these 
calculations, a preaveraged version of HI is introduced 
in order to perform a direct comparison of the BD results 
with numerical results derived from the preaveraged 
Kirkwood-Riseman theory. 

METHOD 

We consider a model for flexible chains with a long-range 
potential and generate BD trajectories according to the 
first-order Ermak and McCammon algorithm 1. The 
model is built so that, in the absence of this potential, 
we have the basic Gaussian chain, where units are 
connected by harmonic springs between neighbours as 
'entropic' soft short-range forces, so that the distance 
between them follows a Gaussian distribution, whose 
root mean square is defined as the statistical length b. 
Then, we have added long-range interactions between 
non-neighbouring units. As explained in the Introduction, 
a relatively soft potential is considered in which the same 
time step can be maintained as employed in our previous 
BD study of transport and dynamic properties for linear, 
ring and star Gaussian chains without long-range 
interactions 9'12 (whereas we have verified in preliminary 
tests with the same algorithm that the time steps should 
be shortened by a factor of 1 / 100 when the more common 
Lennard-Jones potential is used). We have used a 
repulsive potential of the form A e-0R,j, inspired by the 
repulsive component of some typical intermolecular 
potentials for small molecules. This potential has a finite 
value, even for R u = 0, that can be adjusted to achieve 
different intensities of the repulsive forces, and it can be 
made soft enough by choosing a particular value for the 
fl parameter. In this way, the force between non- 
neighbouring units is introduced and BD simulations are 
performed following the same procedure described 
elsewhere for Gaussian chains of different lengths 9 (i.e. 
different number of statistical units N). As a marginal 
difference with respect to other models describing 
excluded volume effects, we do not consider that the 
long-range potential affects the interaction between 
neighbouring units. 

In the present simulations, we have also considered 
realistic HI that are introduced through a preaveraged 
tensor. This approximation, usual in simulation and 
theoretical calculations in unperturbed conditions 13, is 
not easily performed in the present conditions, since this 
tensor depends on (Ri~ 1 ), which remains unknown when 
excluded volume effects are considered. (A theoretical 
expression for (R/~ 1) has been derived from the blob 
model 14. In later sections, we discuss these results, 
and we also use our simulation values to define 
preaveraged HI tensors.) 

We have found that a wide range of parameters A and 
fl can yield appropriate values of the exponent v 
corresponding to the scaling law for the radius of gyration 
previously mentioned. However, most of these parameters 
are not adequate, since they raise a clearly N-dependent 
value for the statistical quadratic average distance 
between neighbouring units along the chain skeleton, 
(b')2, while we believe that, in an appropriate model, the 

N-dependent excluded volume effects should not change 
this distance in the working range of values of N. The 
only method that we have found to avoid this dependence 
consists of introducing a cut-off distance re for the 
excluded volume potential, so that: 

U(Rij)={ Ae-~R'j Rq<~re (1) 
R i j  > r e 

This new parameter slightly complicates the mathematical 
form of the potential, because both the potential and its 
first derivative are no longer continuous. Nevertheless, 
the fl parameter can be fitted so that discontinuities are 
not important. 

With the final form of the repulsive potential given in 
equation (1) a certain range of parameters A, fl and rc 
are found that give a scaling exponent v reasonably 
close to theoretical predictions, keeping the quadratic 
distance between neighbouring units of the model N 
independent. The value of v is mainly determined by both 
parameters A and fl (though A has a stronger influence), 
while r e is directly related to the value of (b') 2. As a final 
result, we have established the set of parameters: 

A = 75.0 fl = 4 r e = 2a = 0.512 

where a is the Stokes friction radius of the statistical units 
of the model. (This is just an easy way to express r e as 
a function of known magnitudes, and does not establish 
any physical relationship between excluded volume and 
hydrodynamic effects.) It should be mentioned that these 
parameter values also yield the highest correlation for 
linear log(S  2) versus log N fits. The values of the 
parameters indicated above are expressed in reduced 
units that were employed in previous BD simulations9 : 
kBT for energy and b for lengths (b being the statistical 
segment distance between neighbouring units in the 
equivalent Gaussian chain without intramolecular 
potential between non-neighbouring units). With these 
parameters, we could use the same simulation time 
step, A t * =  kBT/(~b 2) = 0.01 (where ~ is the friction 
coefficient of a unit), that was employed without the 
excluded volume potential 9. For every chain with 
different N, we performed five different trajectories from 
different random number seeds, and have extended our 
calculations to 40000 steps per trajectory. Our final 
results are given as statistical means over the five samples. 

MONTE CARLO CALCULATIONS 

To check the results obtained through our BD program, 
we have also performed equilibrium MC simulations 
employing a purely repulsive hard-spheres potential. For 
every MC sample, we generated a linear Gaussian chain 
according to a simple method described before 15. 
However, the MC sampling technique is different from 
that used previously. At every simulation step, we 
randomly choose a chain vector whose coordinates are 
randomly changed according to a Gaussian distribution 
of distances defined by b. Subsequently, we rotate the 
rest of the chain around this vector according to three 
randomly chosen Euler angles. This method, inspired by 
the Pivot algorithm 16, is very efficient in the generation 
of linear chains with excluded volume. Distances Rij 
between all pairs of units are calculated after every step, 
the generated conformation being rejected if R o < arts 
for any pair ij (I i - J[ > 1 ). The term artS is the parameter 
characteristic of the hard-spheres potential, whose value 
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Table 1 Dimensions resulting from BD and M C  simulations for linear 
chains with intramolecular interactions 

BD MC 

N (S2) /b  2 (R2>/b 2 (S2) /b  2 (R2) /b  2 

6 1.09 __ 0.02 5.7 -4- 0.1 1.133 -4- 0.002 6.06 4- 0.02 
8 1.57 + 0.04 8.7 4- 0.3 1.608 __ 0.003 8.99 4- 0.02 

11 2.354-0.05 13.84-0.5 2.3474-0.007 13 .59+0 .05  
15 3.43 4- 0.06 21.0 4- 0.5 3.392 4- 0.009 20.16 4- 0.07 
20 4.61 4- 0.05 29.2 4- 0.5 4.794 4- 0.008 28.98 4- 0.06 
25 6.0 4- 0.30 36.0 + 2.0 6.25 4- 0.010 38.09 4- 0.07 
37 9.70 4- 0.20 64.0 4- 3.0 10.00 4- 0.030 61.60 4- 0.20 

is chosen so that the average ($2> for a chain obtained 
with this procedure is the same as the value calculated 
from a BD simulation of a chain with the same number 
of units, employing the model described in the previous 
section. The resulting parameter that adequately satisfies 
this criterion is trns = 0.56, which is very close to the 
value of 0.55 proposed by Baumgiirtner for the study of 
polymer chains in good solvent conditions 17. 

For  every chain, we have computed eight different MC 
samples, each composed of 50 000 conformations. Final 
MC results are presented as means and deviations over 
these samples. 

RESULTS 

Dimensions. Table 1 gives the results obtained from 
BD and MC simulations for the quadratic radius of 
gyration, (S  2 >, and the quadratic end-to-end distance, 
( R  2 ) ,  for linear chains with the number of units ranging 
from N = 6 to 37. Differences between numerical 
uncertainties in both types of simulations are due to the 
size of the statistical sample considered, which is 
considerably larger in MC than in BD simulations. BD 
trajectories consume much more computer time than MC 
calculations, so that generation of longer trajectories is 
extravagant from a practical point of view. 

A log- log fitting of (S2> v e r s u s  N c = ( N - 1 )  
(1 + 1/N) yields the exponents 2v -- 1.17 +_ 0.01 for BD 
results and 1.175 _+ 0.001 for MC results. The most 
precise theoretical estimation of this exponent, according 
to Renormalization Group theory is, is v = 0.588 or 
2v = 1.176. On the other hand, a similar fitting of ( R  2) 
versus ( N - 1 )  (the number of connectors between 
neighbouring units in a linear chain) yields the exponents 
1.20 _+ 0.01 (BD) and 1.172 _+ 0.002 (MC). The small 
difference observed in this case should be attributed to 
numerical uncertainties that are more important in the 
case of ( R  2 ) than for ( S  2) (as seen in Table 1). 

Distribution function. The distribution function F ( R ) 
of the end-to-end distance R is readily obtained from 
simulations by computing the histogram corresponding 
to an adequate grid of values of R. F(R) is derived from 
the histogram by a proper normalization according to 
the total number of points (number of cycles in MC 
simulations or number of time steps in BD trajectories) 
and to the volume associated with the given checked grid 
interval. The results corresponding to a linear chain with 
N = 20 are shown in Figure 1. Taking into account the 
statistical fluctuations of the points, there is remarkable 
agreement between BD and MC results. 
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Figure 2 shows a direct comparison between BD results 
for F(R) computed with and without excluded volume 
interactions (the latter obtained from trajectories 
calculated previously 9 ). We include also in this figure the 
theoretical curve corresponding to a Gaussian chain with 
N = 20 statistical units. Clearly, Gaussian behaviour is 
not observed when repulsive interactions are introduced, 
a result that has already been reported 1°'19. Some other 
equations have been proposed for the distribution 
function of R when intramolecular interactions are 
present. Thus, we have included in Figures 1 and 2 a 
theoretical curve/9 based on the scaling form derived by 
des Cloizeaux 2° : 

F(R) = 
C(R2)-a/2(Rl(RE)l /Z)°  e x p [ -  (KRI(R2)*/2)  t] 

(2) 
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Figure I Comparison between distribution functions, F(R), with 
intramolecular interactions computed via MC ( A )  and BD (I-1) 
simulations, for a linear chain with N = 20 units. The des Cloizeaux 
function, described in the text, is represented by a solid line. The broken 
line corresponds to a Gaussian distribution : 

I , , .  

10 12 

0.005 
o 

o 0 

o o 
0.004 ~oq o 

\ o 

\ o .003 9 

o \ 
c 6  

0.002 o~ 
% 

o ~ 

0.001 ~ d  ~ 

0.000 - 
0 2 4 6 0 10 2 

R / b  

Figure 2 Compar ison  between F ( R )  with (V1) and without ( O )  
intramolecular interactioni, computed via BD simulations, for a linear 
chain with N = 20 units. The des Cloizeaux function is represented 
by a solid line. The broken line corresponds to a Gaussian distribution 

POLYMER, 1992, Volume 33, Number 16 3479 



Brownian dynamics of flexible chains." A. Rey et al. 

32  

1 9 -  

17 * ' - " - - - *  

2 4  
15 , , _ - o - - - * - - - * - - . .  

~ 1 3  r - - ' - - ' - -  ~ ' - - * -  - ' * - - -  • 

_ - . . . .  _ ~ 
A 16 11 o- ~ ' ' -  ~ ' ~  ~ - * ' ' ~  

9 - - - ' - - - - - - - ' - ' - - - - - ' - ' - - - - "  v 

7 • -  - ' 4 "  - " ° -  - 4 -  - " t "  - 4 " "  " 4 - - ' 4 "  - - ° -  - "e" - - ° ' - " ~ -  - " o  

8 
_ - . . . . . . . . . . . .  _~  

3 - - - ' - - - - ' - ' - - - - ' - ' - ' - ' - - ' - ' - - ' - ' - - - - - - - - -  

o 1 . . . . .  7 . . . . . . .  ~ . . . . . . .  , . . . . . . .  3 . . . . . . .  
0 4 8 12  16  2 0  

( i+ i ) /2  

Figure 3 Average values of (R~) versus the central position of the 
pair ij, (i + j)/2 for a linear chain with N = 20 units. The lines connect 
points with a given value of [i -Jl ,  which is indicated by the numbers 
on the curves 

where 0 and t are related to critical exponents 21 and K 
is obtained from 19 : 

K = { F E ( d + 2 + O ) / t ] / r E ( d + O ) / t ] }  1/2 (3) 

so that, for space dimension d = 3 (which implies 
0 = 5/18 and t ~ 5/2), one obtains K ~ 1.08. C is a 
normalization constant that is calculated from: 

C = (1/4x)tK°+d/FE(O + d)/ t]  (4) 

Good  agreement between this function and both the BD 
and MC values can be observed. 

In Figures 1 and 2, we can observe the depression in 
F(R)  appearing for small R, which is deferred to as a 
correlation hole in the end-to-end distance distribution 
function zl'zz and is due to excluded volume interactions. 
According to theoretical estimations based on equation 
(2) and the scaling law ( R Z ) ' - ~ ( N - 1 )  v, one 
obtains F(R -~0) ~ (N - l )  -~, with e - 1.93. We have 
computed this exponent by a log- log  fitting of the 
values of the histogram (or normalized number of 
conformations) with ( R / b ) <  1 versus (N - 1 ), and have 
obtained an exponent e = 1.93 _+ 0.02, so that the 
theoretical prediction is numerically verified. 

Internal averages (R~ ) and (RIS 1 ). The distribution 
momenta  of internal distances between units, (R~"j), are 
of fundamental importance in accurately defining their 
distribution. However, our interest here is not to perform 
an exhaustive discussion of F(Ru),  but to check the 
results obtained from our BD model for averages with 
n = 2 and - 1  that appear in the calculation of most 
properties of interest. 

Figure 3 is a plot of ( R  2)  for a chain of N = 20 
statistical units against the central position of the pair ij, 
(i + j ) / 2 .  The lines connect points of constant [ j -  i[ 
(constant distance, measured in number of intermediate 
connectors, along the chain backbone).  As previously 
reported11, there is a slight upward bending of the lines 
at their centre, indicating the existence of edge effects in 
the expansion of the chain. This is expected from physical 
considerations. The ends of a polymer chain are usually 
surrounded by fewer units than the beads at the centre 

of the chain ; thus, the former are subjected to a smaller 
excluded volume force than the latter, and the 
corresponding expansion follows the same trend. (Figure 
3 shows data computed from MC simulations. BD 
trajectories give the same averages, but fluctuations due 
to statistical uncertainties are greater, as seen in Table 
1, and the analysis of this subtle dependence on the 
position becomes problematic.)  

For I J - i l  = 1 we obtain the nearest neighbours 
quadratic distance for the expanded chain, (b') 2. The 
average value from BD trajectories of chains with 
different N is (b')2/b 2 = 1.091 ___ 0.003, which represents 
about  a 10% expansion with respect to unperturbed 
chains. This expansion is only 5% for the end connectors 
of the chains, and rises up to 15 % at their middle points. 
These differences may not seem very important,  but they 
may be responsible for some discrepancies observed 
between theoretical and simulation results for certain 
properties. 

The popular blob theory 14 assumes a uniform 
expansion of the unperturbed chain when excluded 
volume interactions are introduced. In this case, the 
equilibrium distribution function F (Rift is still supposed 
to be the same as F(R) ,  so that ( R  2)  ,-~ [i _jl2V (when 
a blob is considered to be equivalent to one unit of the 
simulation model). To check this point, we have 
computed ( R ~ ) / [ i  - j [  1.176 as a function of [i - j [  from 
our simulation results. We have observed that the 
resulting value of this ratio is not constant, but decreases 
with increasing l i - J l  for every chain. This implies again 
a non-uniform expansion of the chain. Thus, blob model 
theory is not consistent in this respect with our simulation 
results. However, more detailed information on longer 
chains would be desirable for adequate clarification of 
this point. 

Figure 4 shows the averages (Ri~ 1 ) versus the central 
position of the pair ij in the chain. We observe the same 
general features as in ( R 2 ) ,  that is, the expansion of the 
chain is not completely uniform. This may be relevant 
when HI  are considered in the dynamics of a polymer 
chain in good solvent conditions. HI  are usually 
represented through second-order tensors that depend 
on 1/R u. Moreover,  when, as frequently occurs, a 
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Table 2 Diffusion coefficient (in reduced units) computed via BD 
simulations with intramolecular potential and preaveraged HI 

N D* 

6 0.352 + 0.0030 
8 0.305 + 0.0030 

11 0.250 +_ 0.0020 
15 0.208 _+ 0.0030 
20 0.1766 __+ 0.0002 
25 0.158 + 0.0020 

preaveraging representation of HI or other simplifying 
approximations are considered in theoretical develop- 
ments 13, the average ( 1/Rii ) plays an important role in 
the final expressions for different properties (as 
translational diffusion coefficients, relaxation times or 
dynamic light scattering cumulants). 

Diffusion coefficient. As a first application of our model 
to non-equilibrium properties, we analysed the BD 
trajectories with excluded volume interactions to obtain 
the translational diffusion coefficient D t of our chains. As 
in previous work 9, we computed D t from the slope of the 
centre of masses quadratic displacement versus time. 
Table 2 gives the results for the diffusion coefficient in 
reduced units (Dt* = ~Dt/kBT). These results correspond 
to trajectories generated with the preaveraged Oseen 
tensor, calculated from previously computed values of 
the reciprocal averages, as: 

1 
(T , j )  = Tq l=  ( R , ~ I ) I  (5) 

6nqo 

for every pair ij, where I is a 3 x 3 unit tensor. This 
allows us to perform a direct comparison with the values 
calculated from the preaveraged Kirkwood-Riseman 
formula, which also employs the preaveraged tensor, 
according to the expressions: 

N N 
Dt = ~ ~ [ (n -x) , j ]  -1 (6) 

i j 

where 

Hij = 1 for i = j 
(7) 

Hij = < T o > otherwise 

We have verified that the results in Table 2 (BD 
simulations with the preaveraged tensor) and those 
obtained from equations ( 5 ) ( 7 )  are in excellent 
agreement. Differences are very small ( < 1% ) when the 
internal averages used in equation (5) are (consistently) 
those obtained through the BD trajectories. A least- 
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squares linear log-log fitting of D* versus N provides the 
scaling law D* ~ N -(0"579+0"007), while experimental 
data from good solvent dilute solutions 23 25 yield 
exponents in the range -0.55 to -0.68. A detailed 
discussion of the BD results for D t and other transport 
and dynamical properties obtained with excluded 
volume chains and realistic preaveraged and also 
fluctuating HI is reported elsewhere 12. 
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